F\

regpect to the ultimate tensile strength, except where otherwise
specified.

In the simplest form, the data may be plotted as cyclic pressure
versus cycles to failure. Because a summary curve utilizing this
parameter will be subsequently shown, it is sufficient to say, that,
since the tangential stress is proportional to diameter ratio, the
curve will consist of a series of widely separated lines correspond-
ing to each diameter ratio.

Fig. 5 shows normalized maximum tangential stress at the
bore which is defined as

o, P Wr+1

UTS UTS W2 —1

(7)

as a function of eycles to failure. As would be expected, a large
amount of the diameter-ratio dependence has been removed. It
should be noted, however, that the least-squares line for the
smaller diameter ratio is at a higher value than the larger diameter
ratio. This is opposite to what would be expected. The actual

failure is probably some function of a combined stress condition
instead of a single principal stress.

Fig. 6 shows the difference in the principal stresses at the bore
as defined by

o, — 0, 2PW? (8-)
UTS  UTS(W: — 1)

as a function of the number of cycles to failure. As can be noted,
the diameter-ratio dependency is small with the larger diameter
ratio logically exhibiting the higher fatigue-strength characteris-
tics.

Fig. 7 shows the data in terms of the normalized octahedral
stress as defined by

UTS

which, since o, = 0, yields

1 117 .
ors Yo — o) + (o — )t + (0, — 0] 5 (9

1
— o2+ o — 00,1

8 10
initiation of the fatigue crack can probably be predicted by some UTS (16)
cyclic stress or strain parameter independent of diameter ratio. A strain parameter defined by
The ecrack, however, must propagate over a larger area in the
larger diameter. Intuitively then, the larger diameter ratio g, — Vo, (11)
should be at a higher stress and life level. Based on this, fatigue E
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Fig. 7 Octahedral siress parameter versus cycles to failure
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Fig. 8 Strain parameter versus cycles to failure
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